Energy Management Strategy Based on Multiple Operating States for a Photovoltaic/Fuel Cell/Energy Storage DC Microgrid

نویسندگان

  • Ying Han
  • Weirong Chen
  • Ying-Yi Hong
چکیده

It is a great challenge for DC microgrids with stochastic renewable sources and volatility loads to achieve better operation performance. This study proposes an energy management strategy based on multiple operating states for a DC microgrid, which is comprised of a photovoltaic (PV) array, a proton exchange membrane fuel cell (PEMFC) system, and a battery bank. This proposed strategy can share the power properly and keep the bus voltage steady under different operating states (the state of charge (SOC) of the battery bank, loading conditions, and PV array output power). In addition, a microgrids test platform is established. In order to verify the effectiveness of the proposed energy management strategy, the strategy is implemented in a hardware system and experimentally tested under different operating states. The experimental results illustrate the good performance of the proposed control strategy for the DC microgrid under different scenarios of power generation and load demand.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Power Management in a Utility Connected Micro-Grid with Multiple Renewable Energy Sources

As an efficient alternative to fossil fuels, renewable energy sources have attained great attention due to their sustainable, cost-effective, and environmentally friendly characteristic. However, as a deficiency, renewable energy sources have low reliability because of their non-deterministic and stochastic generation pattern. The use of hybrid renewable generation systems along with the storag...

متن کامل

Implementation of Optimal Load Balancing Strategy for Hybrid Energy Management System in DC/AC Microgrid with PV and Battery Storage

The proposed paper presents the DC/AC microgrid modeling using the Energy storage units and photovoltaic (PV) panels. The modal consists of a two stage power conversion. The power is supplied to the both DC and AC loads by this PV solar panels. The suitable way to explore the PV generation model is by using manufacturer datasheet. A bidirectional converter is connected to the battery storage sy...

متن کامل

A Multi-port High Step-up DC/DC Converter for Hybrid Renewable Energy Application

This paper presents a novel multi-port DC/DC converter which is suitable to be used as the interface of hybrid renewable energy systems. The converter contains three unidirectional power flow ports which two of them are input ports and are connected to two independent energy sources while the third one is the output port that feeds a standalone load. Furthermore, the proposed converter contains...

متن کامل

DC Microgrid Protection in the Presence of the Photovoltaic and Energy Storage Systems

In recent years, most of the loads and distributed generations are connected to the AC grid through the power electronic converters. Using the DC grid beside the AC grid can reduce the conversion stages and power losses. Protection of the DC grids is a challenging issue because of the new structures of DC grids and fast transients of the DC faults. This paper studies the protection of the low v...

متن کامل

Power and Fresh Water Production by Solar Energy, Fuel Cell, and Reverse Osmosis Desalination

This paper presents sizing, energy management strategy, and cost analysis for a configuration consisting of solar photovoltaic (PV) panels, fuel cell (FC) storage system, and reverse osmosis (RO) desalination technology for combined power and fresh water production. In this system, PV is the main power supply source; fuel cell is a storage system accompanied by Hydrogen production and storage d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017